ACADEMIC PROGRAMS

The engineering program in each of the fields of chemical (catalog.udayton.edu/undergraduate/schoolofengineering/programs/chemicalandmaterialsengineering), civil (catalog.udayton.edu/undergraduate/schoolofengineering/programs/civilandenvironmentalengineeringandengineeringmechanics), computer (catalog.udayton.edu/undergraduate/schoolofengineering/programs/computerengineering), and electrical and computer engineering (catalog.udayton.edu/programs/electricalandcomputerengineering) are accredited by the Engineering Technology Accreditation Commission of ABET, http://www.abet.org and electronic and computer, industrial, global manufacturing systems and mechanical engineering technology are accredited by the Engineering Technology Accreditation Commission of ABET, http://www.abet.org.

Courses

EGR 101. Discover Engineering Seminar. 0 Hours
This course will be the venue to introduce Discover Engineering students to the disciplines/departments across the School of Engineering to help them select their major.

EGR 102. Introduction to the University Experience for Engineers. 0 Hours
This is a first semester course required for all majors the School of Engineering. The 2 primary components of this course include: (1) Introduction to the University of Dayton Educational Experience (2) Students as Reflective Decision-Makers and Active Learners This course will also be the venue to introduce all School of Engineering students to the disciplines/departments across the School of Engineering. This course is part of the Integrated Engineering Core (IEC).

EGR 103. Engineering Innovation. 2 Hours
First year multi-disciplinary innovation projects primarily geared towards skill development in the areas of requirements analysis, creativity, conceptual design, design and problem-solving processes, prototyping, teamwork, and project communications. Application to the development of a new product or technology meeting societal needs. This course is part of the Integrated Engineering Core for all engineering students.

EGR 150. Enrichment Workshop I. 0 Hours
A workshop structured to provide collaborative learning in fundamental engineering topics of calculus, chemistry, and physics facilitated by upper-class engineering students. This course is offered in the fall semester.

EGR 151. Enrichment Workshop II. 0 Hours
A workshop structured to provide collaborative learning in fundamental engineering topics of calculus, chemistry and physics facilitated by upper-class engineering students. This course is offered in the spring semester.
EGR 198. Multidisciplinary Research & Innovation Laboratory. 1-6 Hours
Students participate in 1.) selection and design, 2.) investigation and data collection, 3.) analysis and 4.) presentation of a research project. Research can include, but is not limited to, developing an experiment, collecting and analyzing data, surveying and evaluating literature, developing new tools and techniques including software, and surveying, brainstorming and evaluating engineering solutions and engineering designs. Proposals from teams of students will be considered.

EGR 200. Professional Development Seminar. 0 Hours
Presentations on contemporary and professional engineering subjects by students, faculty, and engineers in active practice. The seminar addresses topics in key areas that complement traditional courses and prepare distinctive graduates, ready for life and work. Registration required for all sophomore students. Prerequisite(s): EGR-102 and (CEE-101 or CME-101 or EGR-101 or MEE-101 or SET-101).

EGR 201. Engineering Mechanics. 3 Hours
This course provides an introduction to mechanics as applied to engineering problems. Principles of force and moment balance, work, and energy conservation are applied to systems in static equilibrium. The similarity of balance laws applied to mechanical behavior to those used in thermodynamics and electric circuits is introduced. Students are introduced to the concepts of free-body diagrams and equivalent systems of forces, properties of areas and sections, analysis of simple structures, internal forces, stress, and material failure. Introduces a common problem-solving approach and processes to address and solve open ended problems and creative application of theory. Both analytical and computer solutions of engineering mechanics problems are emphasized. This course is part of the Integrated Engineering Core for all engineering students. Prerequisite(s): MTH 168; PHY 206.

EGR 202. Engineering Thermodynamics. 3 Hours
This course provides an introduction to engineering thermodynamics, emphasizing the vital importance of energy generation and efficiency from a multi-disciplinary perspective. State descriptions of pure substances and mixtures. Control volume analysis and conservation principles applied to systems with respect to mass, energy, and entropy with applications to power, refrigeration, chemically reacting and other energy conversion systems. Introduces a common problem-solving approach and processes to address real, open ended problems and creative application of theory. Both analytical and computer solutions of engineering thermodynamics problems are emphasized. This course is part of the Integrated Engineering Core for all engineering students. Prerequisite(s): MTH 168.

EGR 203. Electrical & Electronic Circuits. 3 Hours
This course provides an introduction to the discipline of Electrical and Computer Engineering. Covers principles of linear circuit analysis and problem solving techniques associated with circuits containing both passive and active components. Students are introduced to DC circuit analysis, AC circuit analysis, and transient circuit analysis. Applications of basic electronic devices including diodes, transistors, and operational amplifiers are studied. Both analytical and computer solutions of electrical and electronic circuit problems are emphasized. This course is part of the Integrated Engineering Core for all engineering students. Prerequisite(s): MTH 168.

EGR 203L. Electrical and Electronic Circuits Lab. 1 Hour
Laboratory investigation of basic electrical and electronic circuits. Introduction to laboratory reporting, safety, and instrumentation. (1 semester hour). Corequisite(s): EGR 203.

EGR 203. Multidisciplinary Research & Innovation Laboratory. 1-6 Hours
Students participate in 1.) selection and design, 2.) investigation and data collection, 3.) analysis and 4.) presentation of a research project. Research can include, but is not limited to, developing an experiment, collecting and analyzing data, surveying and evaluating literature, developing new tools and techniques including software, and surveying, brainstorming and evaluating engineering solutions and engineering designs. Proposals from teams of students will be considered.

EGR 200. Professional Development Seminar. 0 Hours
Presentations on contemporary and professional engineering subjects by students, faculty, and engineers in active practice. The seminar addresses topics in key areas that complement traditional courses and prepare distinctive graduates, ready for life and work. Registration required for all sophomore students. Prerequisite(s): EGR-102 and (CEE-101 or CME-101 or EGR-101 or MEE-101 or SET-101).

EGR 201. Engineering Mechanics. 3 Hours
This course provides an introduction to mechanics as applied to engineering problems. Principles of force and moment balance, work, and energy conservation are applied to systems in static equilibrium. The similarity of balance laws applied to mechanical behavior to those used in thermodynamics and electric circuits is introduced. Students are introduced to the concepts of free-body diagrams and equivalent systems of forces, properties of areas and sections, analysis of simple structures, internal forces, stress, and material failure. Introduces a common problem-solving approach and processes to address and solve open ended problems and creative application of theory. Both analytical and computer solutions of engineering mechanics problems are emphasized. This course is part of the Integrated Engineering Core for all engineering students. Prerequisite(s): MTH 168; PHY 206.

EGR 202. Engineering Thermodynamics. 3 Hours
This course provides an introduction to engineering thermodynamics, emphasizing the vital importance of energy generation and efficiency from a multi-disciplinary perspective. State descriptions of pure substances and mixtures. Control volume analysis and conservation principles applied to systems with respect to mass, energy, and entropy with applications to power, refrigeration, chemically reacting and other energy conversion systems. Introduces a common problem-solving approach and processes to address real, open ended problems and creative application of theory. Both analytical and computer solutions of engineering thermodynamics problems are emphasized. This course is part of the Integrated Engineering Core for all engineering students. Prerequisite(s): MTH 168.

EGR 203. Electrical & Electronic Circuits. 3 Hours
This course provides an introduction to the discipline of Electrical and Computer Engineering. Covers principles of linear circuit analysis and problem solving techniques associated with circuits containing both passive and active components. Students are introduced to DC circuit analysis, AC circuit analysis, and transient circuit analysis. Applications of basic electronic devices including diodes, transistors, and operational amplifiers are studied. Both analytical and computer solutions of electrical and electronic circuit problems are emphasized. This course is part of the Integrated Engineering Core for all engineering students. Prerequisite(s): MTH 168.

EGR 203L. Electrical and Electronic Circuits Lab. 1 Hour
Laboratory investigation of basic electrical and electronic circuits. Introduction to laboratory reporting, safety, and instrumentation. (1 semester hour). Corequisite(s): EGR 203.
EGR 351. By Design. 3 Hours
This is a course about design as a philosophy for living. The point of
crossover between ethics and engineering design is the word “good.” The
term “good” has an ethical valence dating back to Aristotle and it has a
practical valence related to the skills necessary for doing design. Thus
the course has two instructors, one whose expertise is in design process
and the other whose expertise is in ethics. The course engages students
in 10 small-scope, non-technical projects in which teams seek solutions
to proposed real-world problems of varying complexity and varying
ethical density in a semi-competitive environment. “Non-technical”
means that non-engineers are expected to participate and contribute
to the design process. And “10 small projects” (rather than one or two
large design projects) means that learning is focused on the design
methodology rather than artifacts generated. We do not aim to teach
for the right answer but the skills in the design process. Prerequisite(s):
REL 103 or ASI 110 or equivalent; junior standing.

EGR 374. Sustainable Energy Analysis and Economics. 3 Hours
This course provides an introduction to technical analysis of the
sustainability of products and processes. Technical topics are to include
energy and exergy consumption, return on investment, renewability,
life cycle analysis, and environmental economics. Throughout the
course, students will reflect on the increased effects of climate
change on marginalized groups in society, as well as constructive and
imaginative responses to dealing with such injustice at multiple levels.
The course culminates in a team-based project, evaluating a system
using the preceding techniques on a system of the students’ choosing.
Prerequisite(s): MTH 129 or MTH 138 or MTH 148 or MTH 168.

EGR 398. Multidisciplinary Research & Innovation Laboratory. 1-3 Hours
Students participate in 1.) selection and design, 2.) investigation and
data collection, 3.) analysis and 4.) presentation of a research project.
Research can include, but is not limited to, developing an experiment,
collecting and analyzing data, surveying and evaluating literature,
developing new tools and techniques including software, and surveying,
brainstorming and evaluating engineering solutions and engineering
designs. Proposals from teams of students will be considered.

EGR 401. ETHOS Center Internship. 12 Hours
Full time domestic or international technical internship with a non-profit
or international non-governmental agency. Permission only.

EGR 411. Advanced Nanotechnology. 3 Hours
Nanotechnology in information, energy, fabrication and metrology: data
storage, nanoelectronics, 3-D transistors; nanomaterials in photovoltaics,
fuel cells; thin films, optical and non-optical lithography, MEMS,
nanofabrication processes; scanning electron microscopy.

EGR 430. Appropriate Technology and Design II. 0-3 Hours
An experiential, case-based course in appropriate technology and
engineering design. Case studies focus on international standards
and specifications for appropriate technologies; global protocols for
needs assessment and engineering impact evaluation; and social
science research methods for well being assessment. The course also
includes an intensive ETHOS service-learning immersion experience
focused on technical or engineering design work in a developing country.
Prerequisite(s): Senior or graduate status; permission of instructor.

EGR 493. Honors Thesis. 3 Hours
Selection, design, investigation, and completion of an independent,
original research study resulting in a document prepared for submission
as a potential publication and a completed undergraduate thesis.
Restricted to students in University Honors Program.

EGR 494. Honors Thesis. 3 Hours
Selection, design, investigation, and completion of an independent,
original research study resulting in a document prepared for submission
as a potential publication and a completed undergraduate thesis.
Restricted to students in University Honors Program.

EGR 499. Engineering Systems Design. 3 Hours
This course will provide students of varied backgrounds with an
interdisciplinary systems-design experience of applying basic
engineering problem-solving and process-oriented approaches to a set
of case studies while examining those case studies through different
philosophical perspectives on engineering itself.