ELECTRICAL & COMPUTER
ENGINEERING

Courses

ECE 101. Introduction to Electrical & Computer Engineering II. 0 Hours
Introduction to electrical and computer engineering faculty, facilities, and curriculum. Career opportunities in electrical and computer engineering and areas of specialization are discussed. Second semester seminar.

ECE 201. Circuit Analysis. 3 Hours
Principles of linear circuit analysis and problem solving techniques associated with circuits containing both passive and active components. Includes analysis of linear circuits with direct current (DC) and alternating current (AC) excitation, as well as a study of transient behavior. Course includes an additional mandatory supervised weekly problem session. Prerequisite(s): MTH 168 and sophomore status. Corequisite(s): ECE 201L.

ECE 201L. Circuit Analysis Laboratory. 1 Hour
Laboratory course stressing experimental techniques, laboratory reporting, safety, and instrumentation. Experimental investigation of linear circuit component behavior and the DC, AC, and transient response of linear circuits. Corequisite(s): ECE 201 or EGR 203.

ECE 203. Introduction to MATLAB Programming. 1 Hour
MATLAB system and development environment, vector and matrix operations using MATLAB, linear algebra and calculus using MATLAB, MATLAB graphics, flow control, symbolic math toolbox. Prerequisite(s): (CPS 132 or CPS 150) or equivalent.

ECE 204. Electronic Devices. 3 Hours
Study of the terminal characteristics of electronic devices and basic single stage amplifier configurations using bipolar junction transistors and field-effect transistors. Analysis of the devices includes a qualitative physical description, volt-ampere curves, and the development of small- and large-signal equivalent circuit models. Prerequisite(s): ECE 201 or EGR 203.

ECE 204L. Electronic Devices Laboratory. 1 Hour
Laboratory investigation of electronic devices: diodes, bipolar junction transistors, field-effect transistors and operational amplifiers. Corequisite(s): ECE 204.

ECE 215. Introduction to Digital Systems. 3 Hours
Introduction to binary systems, logic circuits, Boolean algebra, simplification methods, combinational circuits and networks, programmable logic devices, flip flops, registers, counters, memory elements, and analysis and design of sequential circuits. Prerequisite(s): EGR 203 or ECE 201. Corequisite(s): ECE 215L.

ECE 215L. Digital Systems Laboratory. 1 Hour
Laboratory investigation of digital logic circuits and systems covered in ECE 215. Logic gate characteristics; combinational logic design and analysis; latches and flip-flops; synchronous and asynchronous sequential logic; simple digital systems. Experiments include design and analysis of digital systems using breadboarding, FPGA boards, modeling and simulation tools, hardware description languages, and logic synthesis tools. Prerequisite(s): ECE 201, ECE 201L. Corequisite(s): ECE 215.

ECE 300. Professional Development Seminar II. 0 Hours
Junior level professional development seminar. Presentations on contemporary and professional engineering subjects by students, faculty, and engineers in active practice. The seminar addresses topics in key areas that complement traditional courses and prepare distinctive graduates, ready for life and work. Registration required for all junior ECE students. Prerequisite(s): EGR 200 or COP 200.

ECE 303. Signals & Systems. 3 Hours
Mathematical framework associated with the analysis of linear systems including signal representation by orthogonal functions, convolution, Fourier and Laplace analysis, and frequency response of circuits and systems. Prerequisite(s): ECE 204, MTH 219 and ECE 203. Corequisite(s): ECE 303L.

ECE 303L. Signals & Systems Laboratory. 1 Hour
Laboratory investigation of signals and systems including signal decomposition, system impulse response, convolution, frequency analysis of systems, and filter design and realization. Prerequisite(s): ECE 204. Corequisite(s): ECE 303.

ECE 304. Electronic Systems. 3 Hours
ELECTRONIC SYSTEMS Study of cascaded amplifiers, feedback amplifiers, linear integrated circuits, and oscillators including steady state analysis and analysis of frequency response. Prerequisite(s): ECE 303. Corequisite(s): ECE 304L.

ECE 304L. Electronic Systems Laboratory. 1 Hour
Design, construction and verification of multistage amplifiers, differential amplifiers, feedback amplifiers, passive and active filters, and oscillators. Prerequisite(s): ECE 303. Corequisite(s): ECE 304.

ECE 314. Fundamentals of Computer Architecture. 3 Hours
Study of computer systems organization, representation of data and instructions, instruction set architecture, processor and control units, memory devices and hierarchy, I/O devices and interfacing peripherals, high- to low-level language mapping, system simulation and implementation, applications and practical problems. Prerequisite(s): CPS 150; ECE 204. Corequisite(s): ECE 314.

ECE 314L. Fundamentals of Computer Architecture Laboratory. 1 Hour
Laboratory investigation of digital computer architecture covered in ECE 314. Computer sub-systems such as central processing units, control units, I/O units, and hardware/software interfaces will be experimentally considered. Simulation and implementation will be used to study applications and practical problems. Prerequisite(s): ECE 215. Corequisite(s): ECE 314.

ECE 316. Introduction to Electrical Energy Systems. 3 Hours
A broad introduction to electric energy concepts. Generation, transmission, distribution, and utilization of electric energy. Renewable energy, three phase systems, transformers, power electronics, motors and generators. Contemporary topics. Prerequisite(s): ECE 201 or EGR 203 or equivalent.

ECE 332. Electromagnetics. 3 Hours
Study of vector calculus, electro- and magneto-statics, Maxwell’s equations, and electromagnetic plane waves and their reflection and transmission from discontinuities. Prerequisite(s): PHY 232.

ECE 333. Applied Electromagnetics. 3 Hours
Electromagnetic theory applied to problems in the areas of waveguides, radiation, electro-optics and electromagnetic interference and electromagnetic compatibility. Prerequisite(s): ECE 332.
ECE 334. Discrete Signals & Systems. 3 Hours
Introduction to discrete signals and systems including sampling and reconstruction of continuous signals, digital filters, frequency analysis, the z-transform, and the discrete Fourier transform. Prerequisite(s): ECE 303.

ECE 340. Engineering Probability & Random Processes. 3 Hours
Axiomatic probability, derived probability relationships, conditional probability, statistical independence, total probability and Bayes’ Theorem, counting techniques, common random variables and their distribution functions, transformations of random variables, moments, autocorrelation, power spectral density, cross correlation and covariance, random processes through linear and nonlinear systems, linear regression, and engineering decision strategies. Prerequisite(s): ECE 303; MTH 218.

ECE 398. Multidisciplinary Research & Innovation Laboratory. 1-6 Hours
Students participate in 1.) selection and design, 2.) investigation and data collection, 3.) analysis, and 4.) presentation of a research project. Research can include, but is not limited to, developing an experiment, collecting and analyzing data, surveying and evaluating literature, developing new tools and techniques including software, and surveying, brainstorming, and evaluating engineering solutions and engineering designs. Proposals from teams of students will be considered.

ECE 401. Communication Systems. 3 Hours
Study of amplitude, angle, pulse, and digital communication systems including generation, detection, and analysis of modulated signals and power, bandwidth, and noise considerations. Prerequisite(s): ECE 304, 340. Corequisite(s): ECE 401L.

ECE 401L. Communication Systems Laboratory. 1 Hour
Design, fabrication, and laboratory investigation of modulators, detectors, filters, and associated communication components and systems. Prerequisite(s): ECE 304. Corequisite(s): ECE 401.

ECE 414. Electromechanical Devices. 3 Hours
Properties and theory of electromechanical devices: nonlinear electromagnetic actuators; rotating machine analysis; field and circuit concepts and direct current, synchronous, and induction machines: special-purpose machines and fractional horsepower machines. Prerequisite(s): ECE 316 or equivalent.

ECE 415. Control Systems. 3 Hours
Study of mathematical models for control systems and analysis of performance characteristics and stability. Design topics include pole-placement, root locus, and frequency domain techniques. Prerequisite(s): ECE 303.

ECE 416. Introduction to Industrial Robotic Manipulators. 3 Hours
Topics include homogeneous transformations, direct and inverse kinematics, trajectory generation, and selected topics of robot vision. Prerequisite(s): ECE 303.

ECE 431L. Multidisciplinary Design I. 2 Hours
Application of engineering fundamentals to sponsored multidisciplinary-team design projects. In a combination of lecture and lab experiences, students learn the product realization process and project management. Product realization topics include idea generation, proposal development, design specifications, conceptualization and decision analysis. Project management topics include cost estimation and intellectual property management. Design projects progress to the proof of concept and prototype development stages. Prerequisites: MEE students: EGM 303, MEE 321, and (MEE 344 or MEE 478 or RCL 578, or MEE 401 or MEE 409), ECE students: ECE 304 or ECE 314.

ECE 432L. Multidisciplinary Design II. 3 Hours
One hour lecture and five hours of lab per week. Detailed evaluation of the Product Realization Process focusing on conceptual design, embodiment design, final design and prototyping is taught. Analysis of the design criteria for safety, ergonomics, environment, cost and sociological impact is covered. Periodic oral and written status reports are required. The course culminates in a comprehensive written report and oral presentation. Prerequisite(s): MEE majors: MEE 431L; CPE majors: ECE 431L and (ECE334 or CPS444); ELE majors: ECE431L and (ECE 401 or ECE415).

ECE 441. Integrated Circuit Electronics. 3 Hours
Integrated circuit design, construction and verification including the study of biasing, multistage differential and analog power amplification, and computer assisted design tools for “on-chip” design and layout. Prerequisite(s): ECE 304.

ECE 443. Introduction to Electro-Optics. 3 Hours
Introductory overview of electro-optics starting with Maxwell’s equations and leading to lasers, holography, and other timely applications. Prerequisite(s): ECE 332.

ECE 444. Advanced Digital Design. 3 Hours
An introduction to modern digital hardware logic design using a hierarchical system approach including top-down development process. An introduction to alternative design implementation forms including hardware description languages (HDLs) for the design of simple and complex combinatorial logic circuits and sequential logic designs with finite state machines. Good HDL coding practices such as readability, reconfigurability, and efficient execution are emphasized along with the use of programmable logic circuits including Field-Programmable Gate Arrays (FPGAs). Prerequisite(s): ECE 215.

ECE 445. Signal Processing. 3 Hours
Selected topics in digital signal and image processing with design projects. The design projects are determined by the instructor and may come from a variety of signal processing applications including medical image processing, video processing, computer vision, statistical signal processing, speech processing, radar signal processing, etc. Prerequisite(s): ECE 334.

ECE 446. Microelectronic Systems Design. 3 Hours
Basic integrated circuit design concepts, system layout, application of design methodology, the fabrication process, manufacturing limitations of the design process, and CAD/CAE utilization to realize the design process. Prerequisite(s): ECE 304.

ECE 447. Digital Control Systems. 3 Hours
Analysis and synthesis of feedback control systems including digital compensators. Topics include performance and stability analysis, regulator and servomechanism design using time and frequency domain methods, and digital implementation case studies. Prerequisite(s): ECE 415; ECE 334 or equivalent.

ECE 448. Fiber Optic Communications. 3 Hours
General light guidance principles; ray optics; dispersion; single mode, multimode, and graded index fibers; basic laser and LED source principles; photodetectors; error probability in digital optical systems; rise time analysis; loss budget analysis; local area networks and long haul communication links. Prerequisite(s): ECE 333. Corequisites: ECE 401.
ECE 449. Computer Systems Engineering. 3 Hours
An introduction to advanced computer architecture and computer systems design. Topics include: exploration of principle architecture features of modern computers, pipelining, memory hierarchy, I/O devices, interconnection networks, introduction to parallel and multiprocessor systems, and the use of hardware description languages (HDLs) in system implementation. Prerequisite(s): ECE 314 and CPS 356.

ECE 450L. Projects Laboratory. 1-3 Hours
Project-oriented laboratory applying engineering skills in the design, development, and demonstration of electrical and electronic systems. Prerequisite(s): Permission of project advisor.

ECE 465. Fundamentals of Solid-State Batteries. 3 Hours
Introduction to the fundamental of solid-state, safe, durable, batteries, including working principles of a battery, state-of-the-art battery (Li-ion battery based on liquid-state electrolytes- advantages/disadvantages), battery safety, need for a safe battery system for low-high power applications (electric vehicles / unmanned-/manned aircrafts, space vehicles, etc.), different design of solid-state batteries (planner-stacked, 3 dimensional, etc.), engineering the structural battery (dual functionality system that can carry mechanical load and store energy), characterization methods to evaluate structure / electrical / electrochemical properties of all solid-state battery materials (cathode, anode, electrolytes), interfaces (electrodes/electrolyte), and electrical/ electrochemical testing of complete battery cells. Also, electrical test methods to evaluate solid-state Li-ion battery (including structural battery) performances, etc., and understanding degradation mechanism of solid-state battery systems (including structural battery) will be discussed. Prerequisite(s): ECE 304 or equivalent.

ECE 466. Fundamentals of Hybrid Electrochemical Power. 3 Hours
Introduction to the fundamental of hybrid electrochemical power (battery + capacitor + fuel cell – integrated systems) including working principles of battery, capacitor, lithium-ion capacitor, and fuel cell, advantages/disadvantages, necessity to hybridize battery / fuel cell / capacitor, electrical hybridization methods, electrochemical testing of hybrid power systems, degradation mechanism, and applications. Hybrid electrochemical power is highly desirable to meet requirements for wide range products (powering electronic gadget to transportation vehicles to space vehicles) requiring low to high power/energy, cycle-life, fast/slow charge/discharge, etc. Prerequisite(s): ECE 304 or equivalent.

ECE 471. Contemporary Power Systems & the Smart Grid. 3 Hours
Introduction to electrical power systems; generation, transmission and utilization; power system analysis; power system control; energy management; and an introduction to smart grid technologies. Prerequisite(s): ECE 316 or equivalent.

ECE 472. Smart Grid Technologies. 3 Hours
An introductory study of enabling technologies and energy issues necessary for full realization of the Smart Grid. Course topics vary. This course can be taken multiple times. Prerequisite(s): ECE 471 or equivalent.

ECE 486. Computer Networks. 3 Hours
Introduction to the fundamental of computer networks, including the Open Systems Interconnection reference model, transmission media, medium access protocol, data link protocols, routing, congestion control, applications, and network security. Recommended prerequisite: ECE303.

ECE 487. Wireless Security. 3 Hours
Wireless security is a very important topic and attracting more and more attention from industry, research, and academia. This course gives a comprehensive overview on the recent advances in wireless network and system security. It will cover security issues and solutions in emerging wireless access networks and systems as well as multi-hop wireless networks. Prerequisite(s): ECE 203 or MEE 314.

ECE 493. Honors Thesis. 3 Hours
Selection, design, investigation, and completion of an independent, original research study resulting in a document prepared for submission as a potential publication and a completed undergraduate thesis. Restricted to students in University Honors Program.

ECE 494. Honors Thesis. 3 Hours
Selection, design, investigation, and completion of an independent, original research study resulting in a document prepared for submission as a potential publication and a completed undergraduate thesis. Restricted to students in University Honors Program. Prerequisite(s): ECE 493.

ECE 498. Multidisciplinary Research & Innovation Laboratory. 1-6 Hours
Students participate in 1.) selection and design, 2.) investigation and data collection, 3.) analysis, and 4.) presentation of a research project. Research can include, but is not limited to, developing an experiment, collecting and analyzing data, surveying and evaluating literature, developing new tools and techniques including software, and surveying, brainstorming, and evaluating engineering solutions and engineering designs. Proposals from teams of students will be considered.

ECE 499. Special Problems in Electrical & Computer Engineering. 1-6 Hours
Particular assignments to be arranged and approved by the department chairperson.

ECE 500. Introduction to the Graduate Program in Electrical and Computer Engineering. 0 Hours
Introduction to ECE graduate program, research methods in ECE, technical writing, literature research, ethics, software and resources.

ECE 501. Contemporary Digital Systems. 3 Hours
An introduction to modern digital hardware logic design using a hierarchical system approach including top-down development process. An introduction to alternative design implementation forms including hardware description languages (HDLs) for the design of simple and complex combinatorial logic circuits and sequential logic designs with finite state machines. Good HDL coding practices such as readability, re-configurability, and efficient execution are emphasized along with the use of programmable logic circuits including Field-Programmable Gate Arrays (FPGAs). Required Background: ECE215 or equivalent.

ECE 503. Random Processes. 3 Hours
Random variables as applied to system theory, communications, signal processing and controls. Topics include advanced engineering probability, random variables, random vectors and an introduction to random processes. Required background: ECE 340 or equivalent.

ECE 505. Digital Signal Processing. 3 Hours
A study of one-dimensional digital signal processing, including a review of continuous system analysis and sampling. Topics include z-transform techniques, digital filter design and analysis, and fast Fourier transform processing techniques. Required background: ECE 334 or equivalent course.
ECE 506. Microelectronic Devices. 3 Hours
Crystalline structure of matter; quantum mechanics and energy band theory; bulk properties of semiconductors; p-n and metal-semiconductor junctions; bipolar junction transistors; field-effect transistors; heterostructures; optical properties of semiconductors; devices, modeling and applications. Required background: ECE 304 or equivalent.

ECE 507. Electromagnetic Fields I. 3 Hours
Fundamental concepts, wave equation and its solutions; wave propagation, reflection and transmission; potential theory; construction of modal solutions; various electromagnetic theorems: concept of source, uniqueness, equivalence, induction and reciprocity theorems. Required background: ECE 333 or equivalent.

ECE 509. Analysis of Linear Systems. 3 Hours
State variable representation of linear systems and its relationship to the frequency domain representation using transfer functions and the Laplace transform. State transition matrix and solution of the state equation, stability, controllability, observability, state feedback and state observers are studied.

ECE 510. Microwave Circuits for Communications. 3 Hours
Microwave transmission, planar transmission lines, microwave components and filters. Microwave tubes, microwave communication, radar systems, and electronic support measures. Prerequisite(s): ECE 507.

ECE 511. Antennas. 3 Hours
Fundamental principles of antennas; analysis and synthesis of arrays; resonant antennas; broadband and frequency independent antennas; aperture and reflector antennas; applications to radar and communication systems. Prerequisite(s): ECE 507 or equivalent.

ECE 521. Digital Communications I. 3 Hours
Fundamentals of digital transmission of information over noisy channels; modulation schemes for binary and M-ary digital transmission; optimum receivers; coherent and noncoherent detection; signal design; intersymbol interference; error control coding; the Viberti algorithm; channel capacity and Shannon limits on reliable transmission.

ECE 523. Satellite Communications. 3 Hours
Topics related to the theory, design and orbital placement of geostationary and geosynchronous satellites and their communications applications, including transmitters and receivers in the RF, microwave and optical operational windows, the associated modulation and communication strategies, system hardware and international satellite networks. Required background: ECE 507 or permission from instructor.

ECE 528. Avionics, Navigation and Guidance. 3 Hours

ECE 530. Digital Integrated Circuit Design. 3 Hours
Integrated circuit design and layout concepts, design methodology, fabrication process and limitations, MOSFET models for digital design, inverter and logic gates, interconnect and delay, combinational circuits, sequential circuits, datapath subsystems, memory circuits, digital phase lock loops. Required background ECE 304.

ECE 531. Analog Integrated Circuit Design. 3 Hours
Integrated circuit design concepts and layout; system perspective on analog design; MOS device theory and processing technology; current mirrors and biasing circuits; voltage and current references; single-stage, differential and operational amplifiers; CAD utilization to realize the design process. Required background: ECE 304 or equivalent.

ECE 532. Embedded Systems. 3 Hours
This course will introduce the student to the concept of embedded systems and the constraints imposed on hard real-time systems. Course will consist of design, development and test of selected hard-deadline hardware and software using Altera's DE2 development boards. The student will design selected hardware interfaces and develop real-time executive and application code in assembly language and C. Each student will design and implement hardware using Verilog HDL. Required Background: ECE 444 or equivalent.

ECE 533. Computer Design. 3 Hours
Design considerations of the computer; register transfer operations; hardware implementation of arithmetic processors and ALU; instruction set format and design and its effect on the internal microengine; hardware and micro-programmed control design; comparative architectures. Required background: ECE 314 or equivalent.

ECE 536. Microprocessor Applications. 3 Hours
Project studies, applications of microprocessors in practical implementations; logic implementation using software; memory mapped I/O problems and interrupt structure implementation; use of compilers; study of alternate microprocessor families including industrial controllers. Required background: ECE 314 or equivalent.

ECE 538. Object-Oriented Programming Applications. 3 Hours
A semi-formal approach to the engineering applications of object-oriented programming. Application of the concepts of classes, inheritance, polymorphism in engineering problems. Introduction to the use of class libraries. Effective integration of the concepts of application programmer interfaces, language features and class libraries. Required background is C programming experience.

ECE 541. Linear Systems & Control. 3 Hours
Study of mathematical methods for control systems and analysis of performance characteristics and stability. Design topics include pole-placement, root locus, and frequency domain techniques. The student will also learn feedback loop sensitivity, basic loopshaping, performance bounds and other introductory aspects of robust control. Required background is ECE 415 or equivalent.

ECE 545. Automatic Control. 3 Hours
Study of mathematical methods for control systems and analysis of performance characteristics and stability. Design topics include pole-placement, root locus, and frequency domain techniques. The student will also learn feedback loop sensitivity, basic loopshaping, performance bounds and other introductory aspects of robust control. Required background is ECE 415 or equivalent.

ECE 547. Non-Linear Systems & Control. 3 Hours
Introduction to nonlinear phenomena in dynamical systems. A study of the major techniques of nonlinear system analysis including phase plane analysis and Lyapunov stability theory. Application of the analytical techniques to control system design including feedback linearization, backstepping and sliding mode control.

ECE 563. Image Processing. 3 Hours
An introduction to image processing including the human visual system, image formats, two-dimensional transforms, image restoration, and image reconstruction. Prerequisite(s): ECE 505.
ECE 564. 3D Computer Vision. 3 Hours
Develop the skills needed to generate synthetic images of 3D objects and to recover 3D structure from one or more views (projections) of 3D objects. Feature recognition in 2D views (images) of a scene based either on actual photographs or synthetic images (computer graphics generated). Applications in robot pose recognition and mobile robot navigation. Students should have experience with MATLAB programming and image processing.

ECE 565. Fundamentals of Solid-State Batteries. 3 Hours
Introduction to the fundamental of solid-state, safe, durable, batteries, including working principles of a battery, state-of-the-art battery (Li-ion battery based on liquid-state electrolytes- advantages/disadvantages), battery safety, need for a safe battery system for low-high power applications (electric vehicles / unmanned-/manned aircrafts, space vehicles, etc.), different design of solid-state batteries (planner-stacked, 3 dimensional, etc.), engineering the structural battery (dual functionality system that can carry mechanical load and store energy), characterization methods to evaluate structure / electrical / electrochemical properties of all solid-state battery materials (cathode, anode, electrolytes), interfaces (electrodes/electrolyte), and electrical/ electrochemical testing of complete battery cells. Also, electrical test methods to evaluate solid-state Li-ion battery (including structural battery) performances, etc., and understanding degradation mechanism of solid-state battery systems (including structural battery) will be discussed. Required background: ECE 304 or equivalent.

ECE 566. Fundamentals of Hybrid Electrochemical Power. 3 Hours
Introduction to the fundamentals of hybrid electrochemical power (battery + capacitor + fuel cell – integrated systems) including working principles of batteries, capacitors, lithium-ion capacitors, and fuel cells. Discussion of the advantages/disadvantages, necessity to hybridize batteries, fuel cells, capacitors. Electrical hybridization methods, electrochemical testing of hybrid power systems, degradation mechanism, and applications. Hybrid electrochemical power is highly desirable to meet requirements for a wide range of products (such as electronic gadgets, transportation vehicles and space vehicles) requiring low to high power/energy, cycle-life, fast/slow charge/discharge, etc. Required background: ECE 304 or equivalent.

ECE 567. Machine Learning & Patterning. 3 Hours
This course introduces the fundamental concepts and models of machine learning with a practical treatment of design, analysis, implementation and applications of algorithms that learn from examples. Topics include supervised and unsupervised learning, self organization, pattern association, feed-forward and recurrent architectures, manifold learning, dimensionality reduction, and model selection. Required background in ECE445 or Graduate Student status.

ECE 568. Detection and Estimation. 3 Hours
This course will provide a fundamental understanding of detection, estimation, and their use in solving engineering problems. Students will be able to solve problems involving hypothesis testing, develop a discrete time signal detector, and compute optimum parameter estimates. Students will become familiar with foundational concepts of likelihood ratio, randomized decision, sufficient statistic, Cramer-Rao bounds, and risk estimation. Students will also develop understanding of linear least square estimation, minimum mean square estimation, minimum mean absolute error estimation, maximum a posteriori estimation, maximum likelihood estimation, minimum variance unbiased estimation, empirical Bayes estimation, and minimum risk shrinkage operator estimation, expectation-maximization algorithm. Prerequisite(s): ECE 503.

ECE 569. Advanced Random Processes. 3 Hours
This course will provide students with a fundamental understanding of probability, random variables and random processes, and their use in solving engineering problems. Students will be able to solve problems involving various noise processes and their probability distributions, describe random signals, and will analyze linear systems with stochastic inputs. Some advanced topics such as Wiener filtering, Kalman filtering, and Karhunen-Loeve decomposition will be covered. Prerequisite(s): ECE 503.

ECE 572. Optical Information Processing. 3 Hours
Mathematical techniques pertaining to linear systems theory; Fresnel and Fraunhofer diffraction; Fourier transform properties of lenses; frequency analysis of optical systems, spatial filtering, applications such as optical information processing and holography.

ECE 573. Photonic Devices & Systems. 3 Hours
Solid-state theory of optoelectronic devices; semiconductor photoemitters; LED’s, optical amplifiers and semiconductor lasers; photodetectors: PIN, APD, photocells, PMT, detection and noise; solar cells; cameras and displays; electro-optic and magneto-optic devices; integration and application of electro-optical components in systems of various types. Prerequisite(s): ECE 507 or permission of department chairperson.

ECE 574. Guided Wave Optics. 3 Hours
Light propagation in slab and cylindrical waveguides; signal degradation in optical fibers; optical sources, detectors, and receivers; coupling; transmission link analysis; fiber fabrication; fiber sensor and communication systems. Prerequisite(s): ECE 507 or permission of department chairperson.

ECE 576. Introduction to Radar. 3 Hours
Overview of the Principles of Electronic Warfare (EW). Review of radar (and radio frequency communication) systems engineering, including fields and waves, waveforms, antennas and array beamforming, targets detection and image processing, tracking, space-time adaptive processing (STAP), synthetic aperture radar (SAR), Inverse SAR (ISAR). Principles of direction finding (DF), Electronic Attack (EA) of MTI (moving target indication) radar, SAR, and digital radio frequency memory (DRFM). Principles of Electronic Protection (EP) in MTI and SAR. The Probability of Intercept (LPI) radar and communications, Electronic Intelligence and STAP Electronic Support Measures (ESM). Required Background: ECE303, ECE332, ECE340, or equivalent. Recommended: ECE576.

ECE 577. Introduction to Electronic Warfare (EW). 3 Hours
Review of the Principles of Electronic Warfare (EW). Review of radar (and radio frequency communication) systems engineering, including fields and waves, waveforms, antennas and array beamforming, targets detection and image processing, tracking, space-time adaptive processing (STAP), synthetic aperture radar (SAR), Inverse SAR (ISAR). Principles of direction finding (DF), Electronic Attack (EA) of MTI (moving target indication) radar, SAR, and digital radio frequency memory (DRFM). Principles of Electronic Protection (EP) in MTI and SAR. The Probability of Intercept (LPI) radar and communications, Electronic Intelligence and STAP Electronic Support Measures (ESM). Required Background: ECE303, ECE332, ECE340, or equivalent. Recommended: ECE576.

ECE 578. Advanced Radar. 3 Hours
Review of the radar range equation, fields and waves, antennas and phased arrays, beamforming, targets and clutter radar cross section, fast time, slow time, detection processing, tracking, space-time adaptive processing (STAP) techniques, including the Generalized Likelihood Ratio Test, Non-Homogeneity Detection, Knowledge-Based STAP, and Constant False Alarm Rate detection processing. Required Background: ECE303, ECE332, ECE340, ECE512 or equivalent. Recommended: ECE515.
ECE 580. Principles of Nanofabrication. 3 Hours
Basic principles of processes used in microelectronic and photonic device fabrication: vacuum systems, plasma processes, physical and chemical vapor deposition, properties of silicon and other substrate materials, photolithography and non-optical lithography, wet chemical and plasma etching, thermal oxidation of silicon, semiconductor doping, ion implantation, metallization, electrical contacts and micro-metrology.

ECE 581. Nanoelectronics. 3 Hours
Introduction to the physics of materials on the nanoscale; quantum confinement theory; electronic and optical properties of semiconductor nanostructures; single electron transistors (SETs); tunneling and ballistic devices; nanostructured LEDs, photodetectors, and lasers; nanophotovoltaics and nanomagnetics; quantum computing and molecular electronics; nanoelectronic fabrication, state-of-the-art and emerging nanoscale devices and applications. Prerequisite(s): ECE 506 or permission of instructor.

ECE 583. Advanced Photovoltaics. 3 Hours
Science and applications of photovoltaics, with special emphasis on inorganic and organic semiconductors, ferroelectrics, chalcopryites, metamaterials, quantum structures and photovoltaics architecture. Prerequisite(s): ECE 506 or permission of instructor.

ECE 586. Computer Networks. 3 Hours
Introduction to the fundamental of computer networks, including the Open Systems Interconnection reference model, transmission media, medium access protocol, data link protocols, routing, congestion control, applications, and network security. Recommended prerequisite: ECE 303.

ECE 587. Wireless Security. 3 Hours
Wireless security is a very important topic and attracting more and more attention from industry, research, and academia. This course gives a comprehensive overview on the recent advances in wireless network and system security. It will cover security issues and solutions in emerging wireless access networks and systems as well as multi-hop wireless networks. Required background: ECE203 or equivalent.

ECE 595. Special Problems in Electrical Engineering. 1-6 Hours
Particular assignments to be arranged and approved by the department chair.

ECE 599. Thesis. 1-6 Hours
Thesis in Electrical and Computer Engineering.

ECE 633. Advanced Computer Architecture. 3 Hours
Examination of modern high performance computing architectures, including out-of-order execution RISC multicore processors and GPGPUs. Design projects integrate the concepts learned in class. Prerequisite(s): ECE 533.

ECE 642. Optimal Control & Estimation. 3 Hours
Introduction to optimal control, starting with dynamic programming for stochastic optimal control; continuous time optimal control, including Pontryagin’s Maximum Principle and its application to the linear case, leading to linear optimal control. Prerequisite(s): ECE 509 or permission of instruction.

ECE 645. Adaptive Control. 3 Hours
On-line approximation based adaptive control techniques for nonlinear systems. An introduction to neural networks and fuzzy systems as part of the control loop is given, leading to a diversity of advanced methods for controlling and stabilizing nonlinear systems subject to uncertainties. Adaptive observers and adaptive output feedback are also introduced. Prerequisite(s): ECE 547 or permission of instructor.