CHEMISTRY

Courses

CHM 115. College Prepatory Chemistry. 3 Hours
One-term course for students desiring to enter a science or engineering program but whose background is insufficient for CHM 123 and CHM 124. Unacceptable for credit toward chemistry requirements in any chemistry program.

CHM 115L. College Prepatory Chemistry Laboratory. 1 Hour
Course to accompany CHM 115 or to be elected by students in CHM 200 who lack previous chemistry laboratory experience. One three-hour laboratory each week.

CHM 123. General Chemistry. 3,4 Hours
Comprehensive treatment of the fundamentals of general chemistry. Prerequisite(s): One year of high school chemistry or equivalent.

CHM 123L. General Chemistry Laboratory. 1 Hour
Laboratory course to complement CHM 123. One three-hour laboratory session each week. Corequisite(s): CHM 124.

CHM 124. General Chemistry. 3 Hours
Comprehensive treatment of the fundamentals of general chemistry. Prerequisite(s): CHM 123.

CHM 124L. General Chemistry Laboratory. 1 Hour
Laboratory course to complement CHM 124. One three-hour laboratory session each week. Prerequisite(s): CHM 124.

CHM 190. Seminar I. 0 Hours
Overview of methods of scientific oral presentation and formal conversation within the molecular sciences professional community.

CHM 200. Chemistry & Society. 3 Hours
Examination of issues such as environmental quality, disease, hunger, synthetic materials, and law enforcement by the application of chemical principles. Course is for non-science majors. Depending upon background and experience, a student needing a laboratory course may enroll in SCI220L. Prerequisite(s): One year of high school chemistry or equivalent.

CHM 201. Quantitative Analysis. 3 Hours
Application of the principles of chemical equilibrium to the theory and techniques of gravimetric, volumetric, spectrophotometric, and electroanalytical methods of chemical analysis. Prerequisite(s): CHM 124, CHM 124L.

CHM 201L. Quantitative Analysis Laboratory. 1 Hour
Course to accompany CHM 201. One three-hour laboratory period each week.

CHM 234. Energy Resources. 3 Hours
The chemical and geological aspects of formation, production, and benefits/costs (including environmental impacts) of energy derived from fossil fuels (coal and hydrocarbons), biofuels (e.g., ethanol production), radioactive materials (nuclear power), and renewable sources (e.g., geothermal, hydro, wind, and solar power). Prerequisite(s): CHM 123, CHM 124. Corequisite(s): GEO 208.

CHM 290. Seminar II. 0 Hours
Overview of methods of scientific oral presentation and formal conversation within the molecular sciences professional community.

CHM 302. Physical Chemistry. 3 Hours
Essential elements of thermodynamics, chemical kinetics, equilibria, and electrochemistry for those with a primary interest in the life sciences. For B.A. chemistry majors and premedical, predestinal, and biology majors. Prerequisite(s): CHM 124.

CHM 302L. Physical Chemistry Laboratory. 1 Hour
Course to accompany CHM 302. One three-hour laboratory each week. Prerequisite(s): CHM 201, CHM 201L. Corequisite(s): CHM 302.

CHM 303. Physical Chemistry. 3 Hours
Fundamentals of thermodynamics, chemical kinetics, electrochemistry, and spectroscopy with a mathematics format. For B.S. chemistry and biochemistry majors and chemical engineers. Prerequisite(s): CHM 201 or equivalent. Corequisite(s): MTH 218.

CHM 303L. Physical Chemistry Laboratory. 1 Hour
Course to accompany CHM 303. One three-hour laboratory each week. Prerequisite(s): MTH 218.

CHM 304. Physical Chemistry. 3 Hours
Fundamentals of thermodynamics, chemical kinetics, electrochemistry, and spectroscopy with a mathematics format. For B.S. chemistry and biochemistry majors and chemical engineers.

CHM 304L. Physical Chemistry Laboratory. 1 Hour
Course to accompany CHM 304. One three-hour laboratory each week. Corequisite(s): MTH 218.

CHM 313. Organic Chemistry. 3 Hours
Major topics in organic chemistry including synthesis, mechanisms, stereochemistry, and spectroscopy. Required of all chemistry majors and students in the life sciences. Prerequisite(s): CHM 124.

CHM 313L. Organic Chemistry Laboratory. 1 Hour
Common separation, purification, and analytical techniques including chromatography and spectroscopy. One three-hour laboratory each week. Prerequisite(s): CHM 124, CHM 124L Corequisite(s): CHM 313.

CHM 314. Organic Chemistry. 3 Hours
Major topics in organic chemistry including synthesis, mechanisms, stereochemistry, and spectroscopy. Required of all chemistry majors and students in the life sciences. Prerequisite(s): CHM 313.

CHM 314L. Organic Chemistry Laboratory. 1 Hour
Synthesis and characterization of organic materials utilizing skills from CHM 313L. One three-hour laboratory each week. Prerequisite(s): CHM 313L. Corequisite(s): CHM 314.

CHM 317. Spectroscopic Identification of Organic Compounds. 1 Hour
The use of nuclear magnetic resonance, infrared, and mass spectrometry in elucidating structures. Emphasis on interpretation and integration of spectral data in problem solving. Prerequisite(s): (CHM 314, CHM 314L) or equivalent.

CHM 319L. Advanced Organic Synthesis Laboratory. 1 Hour
Preparation of organic compounds by single and multi-step synthetic sequences. Basic techniques in synthesis including use of organometallics, inert atmosphere, temperature control, extraction, vacuum distillation, column chromatography, recrystallization, and spectroscopic characterization methods. One four-hour laboratory each week. Prerequisite(s): CHM 314, CHM 314L.

CHM 341. Environmental Chemistry. 3 Hours
An introduction to the chemical processes in the environment. Topics include chemical equilibrium in aqueous solution, reaction mechanisms as applied to atmospheric chemistry, and analytical methods commonly applied to environmental samples. Prerequisite(s): CHM 314 or permission of instructor.
CHM 341L. Environmental Chemistry Laboratory. 1 Hour
Laboratory course to accompany CHM 341. Corequisite(s): CHM 341.

CHM 390. Seminar III. 0 Hours
Overview of methods of scientific oral presentation and formal conversation within the molecular sciences professional community.

CHM 404. Special Topics in Physical Chemistry. 3 Hours
Thorough treatment of topics such as electrochemistry, macromolecules, photochemistry, or spectroscopy. May be repeated as topics change. Prerequisite(s): CHM 302 or CHM 303.

CHM 412. Intermediate Organic Chemistry. 3 Hours
Modern theory and practice of organic chemistry. May include structure-reactivity relationships, reaction mechanism, and synthetic topics not normally treated in introductory courses. Prerequisite(s): CHM 302 or equivalent; CHM 313, CHM 314; senior standing.

CHM 415. Analytical Chemistry. 2 Hours
Chemical analysis based on modern instrumentation. Chromatographic, electrochemical, and spectroscopic methods. Prerequisite(s): CHM 201, CHM 201L; (CHM 302 or CHM 304).

CHM 415L. Analytical Chemistry Laboratory. 2 Hours
Course to accompany CHM 415. Two three-hour laboratory sessions each week. Prerequisite(s): CHM 201L; CHM 302 or equivalent.

CHM 417. Inorganic Chemistry. 3 Hours
An advanced course in modern inorganic chemistry. Atomic structure, principles of bonding and structure, acid-base chemistry, periodicity, coordination compounds, nonaqueous solvents, electrochemistry, molecular symmetry, organometallic compounds, and the chemistry of selected representative elements. Prerequisite(s): CHM 314. Corequisite(s): CHM 302 or CHM 304.

CHM 418L. Inorganic Chemistry Laboratory. 1 Hour
Laboratory course dealing with the synthesis and characterization of inorganic and organometallic compounds. Topics include vacuum and inert atmosphere techniques, separation and purification, spectroscopic characterization, X-ray diffraction, magnetic moment, and conductance measurements. Prerequisite(s): CHM 201L, CHM 314L. Corequisite(s): CHM 417.

CHM 420. Biochemistry. 3 Hours
The fundamental aspects of the chemistry and biochemistry of carbohydrates, lipids, proteins, and nucleic acids. Enzymology, protein purification, bioenergetics, metabolism of carbohydrates, lipids, amino acids, nucleotides and nucleic acids, elementary molecular biology, and control processes are described. Acceptable preparation for medical school. Prerequisite(s): CHM 314.

CHM 420L. Biochemistry Lab for the Medical Sciences. 1 Hour
A laboratory course to accompany CHM 420, biochemistry. Prerequisite(s): CHM314, CHM314L. Co-requisite(s): CHM420.

CHM 426. Biosynthetic Organic Chemistry. 3 Hours
Mechanistic fundamentals of the biosynthesis and transformation of organic natural products, with special emphasis on medicinal compounds, toxins, pheromones and other secondary metabolite structures. Prerequisite(s): (CHM 314, CHM 314L) or equivalent.

CHM 427. Medicinal Chemistry. 3 Hours
The chemical mechanisms of action of the major drug classes will be surveyed with particular emphasis on the facets of organic chemistry that control drug-receptor interactions, metabolism and mechanisms of toxicity and resistance. First term. Prerequisite(s): CHM 314; (CHM 420 or CHM 451).

CHM 450. Advanced Organic Synthesis. 3 Hours
Fundamentals of synthesis and transformations of organic compounds, with emphasis on mechanisms; pericyclic reactions; small and medium ring synthesis; chemoselectivity, regioselectivity, stereoselectivity, retrosynthesis, functional group transformations, carbon-carbon bond forming reactions, oxidations, reductions and protecting groups. Prerequisite: (CHM 314, CHM 314L) or equivalent.

CHM 451. General Biochemistry I. 3 Hours
Discussion of the chemistry and biochemistry of carbohydrates, amino acids, proteins, and nucleic acids, including health-science and methodologic aspects. Descriptions of enzymology, protein purification, and carbohydrate metabolism related to such topics as bioenergetics, membranes, and disease processes. Recommended for students desiring entry into graduate and professional schools. Prerequisite(s): CHM 201, CHM 314.

CHM 452. General Biochemistry II. 3 Hours
Discussion of selected topics in bioenergetics, and metabolism of lipids, amino acids, porphyrins, nucleic acids, and proteins. Current aspects of nutrition, biochemical genetics, endocrinology, regulation, and genetic engineering addressed and related to health-science topics as time permits. Suitable preparation for medical school. Prerequisite(s): CHM 451.

CHM 454. Rational Drug Design. 3 Hours
Introduction to drug target selection, lead compound discovery, and application of structure-activity relationships and computational chemistry towards refinement and optimization of lead compounds and their derivatives. Use of molecular graphics software and publicly available macromolecular structure databases will provide the foundation for evaluating macromolecular models of drug targets and allow a hands-on exploration of the structure/function relationships of proteins that have been successful targets of rational drug design. Prerequisite(s): (CHM 420 or CHM 452) or equivalent.

CHM 462L. Biochemistry Laboratory. 1 Hour
Laboratory course to accompany biochemistry lecture courses. Spectrophotometry, pH and dissociation, enzymologic methodology and analytical techniques, chromatographic techniques. Corequisite(s): CHM 420 or CHM 451.

CHM 463L. Bioanalytical Chemistry Laboratory. 1 Hour
Introduction to analytical methods in current use in biochemistry. Course will focus on separations and spectroscopic methods for the analysis of biomolecules. Prerequisite(s): CHM 201, CHM 201L, CHM 302.

CHM 477. Honors Thesis Project. 3 Hours
First of two courses leading to the selection, design, investigation, and completion of an independent, original Honors Thesis project under the guidance of a faculty research advisor. Restricted to students in the University Honors Program with permission of the program director and department chairperson. Students pursuing an interdisciplinary thesis topic may register for three semester hours each in two separate disciplines in consultation with the department chairpersons. Prerequisite(s): Approval of University Honors Program.

CHM 478. Honors Thesis Project. 3 Hours
Second of two courses leading to the selection, design, investigation, and completion of an independent, original Honors Thesis project under the guidance of a faculty research advisor. Restricted to students in the University Honors Program with permission of the program director and department chairperson. Students pursuing an interdisciplinary thesis topic may register for three semester hours each in two separate disciplines in consultation with the department chairpersons. Prerequisite(s): Approved 477; approval of University Honors Program.
CHM 480. Professional Practices Seminar. 1 Hour
Practicum which culminates in the presentation of a technical talk on a topic in chemistry to peers and faculty members. Emphasis on the molecular scale of observation.

CHM 490. Seminar IV. 1 Hour
Presentation of a research topic during the weekly seminar series for the Department of Chemistry. Prerequisite(s): CHM 480.

CHM 495. Introduction to Research Seminar. 0 Hours
Research topics presented by visiting scientists and faculty, and the results of thesis research by senior students. Required of all junior chemistry and biochemistry majors in the B.S. programs. Grading Option two.

CHM 496. Professional Practices Seminar. 0 Hours
After discussions of the chemical literature and information retrieval, resumes, graduate education, and career opportunities, students present technical talks on topics with social, ethical, or historical implications. Required of all chemistry and biochemistry majors, both B.S. and B.A.

CHM 497. Research Seminar. 0 Hours
A series of seminars as described under CHM 495. Required of all senior chemistry and biochemistry majors in the B.S. programs.

CHM 498. Research & Thesis. 3 Hours
All students in the B.S. programs including co-op students are required to enroll for a minimum of three semester hours in a research course (CHM 498). Students may take additional research semester hours (CHM 499) if the work extends for more than two semesters. Successful completion of research courses requires the submission of a typewritten thesis and the presentation of a seminar. With the prior approval of the department chairperson, B.S. co-op students may substitute work experience for research. Prerequisite(s): Permission of department chairperson.

CHM 499. Research & Thesis. 1-3 Hours
All students in the B.S. programs including co-op students are required to enroll for a minimum of three semester hours in a research course (CHM 498). Students may take additional research semester hours (CHM 499) if the work extends for more than two semesters. Successful completion of research courses requires the submission of a typewritten thesis and the presentation of a seminar. With the prior approval of the department chairperson, B.S. co-op students may substitute work experience for research. Prerequisite(s): CHM 498; permission of department chairperson.

CHM 512. Intermediate Organic Chemistry. 3 Hours
Modern theory of organic chemistry and reaction mechanisms. Prerequisite(s): CHM 314 or equivalent.

CHM 515. Analytical Chemistry. 2 Hours
Methods of analysis based on modern instrumentation including chemical, electrical, and spectral methods. Prerequisite(s): CHM 201 or CHM 302 or CHM 304.

CHM 515L. Analytical Chemistry Laboratory. 2 Hours
Laboratory course to accompany CHM 515.

CHM 517. Inorganic Chemistry. 3 Hours
An introductory course. The fundamentals of modern inorganic chemistry including atomic structure, principles of structure and bonding, acid-based chemistry, periodicity, coordination compounds, nonaqueous solvents, electrochemistry, molecular symmetry, and the chemistry of representative elements.

CHM 525. Principles of Organic Chemistry. 3 Hours
An introduction to the fundamentals of organic chemistry. Prerequisite(s): CHM 124.

CHM 526. Principles of Organic Chemistry. 3 Hours
An introduction to the fundamentals of organic chemistry. Prerequisite(s): CHM 124.

CHM 528. Theoretical Principles of Chemistry. 3 Hours
No description available. Prerequisite(s): MTH 218.

CHM 528L. Theoretical Principles of Chemistry Laboratory. 1 Hour
Laboratory course to accompany CHM 527 · CHM 528. One three-hour laboratory per week.

CHM 536. Biosynthetic Organic Chemistry. 3 Hours
Mechanistic fundamentals of the biosynthesis and transformation of organic natural products, with special emphasis on medicinal compounds, toxins, pheromones and other secondary metabolite structures. Prerequisite(s): CHM 314, CHM 314L or equivalent.

CHM 539. Special Topics in Physical Chemistry. 3 Hours
Topics of current interest in areas such as chemical instrumentation, electronics, physical biochemistry, macromolecular chemistry, and spectroscopy.

CHM 541. Topics in Physical Chemistry. 3 Hours
Modern aspects of physical chemistry, which may include the solid state, electrochemistry, or mathematical methods of physical chemistry.

CHM 544. Coordination Chemistry. 3 Hours
Properties of transition metal ions, reaction mechanisms in coordination compounds, bioorganic systems, electron transfer mechanisms, and the experimental tools common to coordination chemistry. Prerequisite(s): CHM 517 or equivalent.

CHM 546. Special Topics in Modern Analytical Chemistry. 3 Hours
Modern analytical methods. Subject matter may include NMR, EPR, electroanalytical methods, GLC, mass spectrometry, IR and Raman spectroscopies, visible and ultraviolet spectrophotometric methods, X-ray techniques, ESCA and Auger spectroscopies, atomic absorption, and fluorescence.

CHM 550. Special Topics in Organic Chemistry. 3 Hours
Modern physical organic chemistry, spectroscopy, photochemistry, molecular rearrangements, stereochemistry, and natural products.

CHM 551. General Biochemistry I. 3 Hours
Discussion of the chemistry and biochemistry of carbohydrates, amino acids, proteins, and nucleic acids, including health-science and methodologic aspects. Descriptions of enzymology, protein purification, and carbohydrate metabolism related to such topics as bioenergetics, membranes, and disease processes. prerequisite(s): CHM 201, CHM 314.

CHM 552. General Biochemistry II. 3 Hours
Discussion of selected topics in bioenergetics, and metabolism of lipids, amino acids, porphyrins, nucleic acids, and proteins. Current aspects of nutrition, biochemical genetics, endocrinology, regulation, and genetic engineering are addressed and related to health-science topics as time permits. Prerequisite(s): CHM 551.

CHM 553. Topics in Biochemistry. 1-3 Hours
Topics of current interest in biochemistry. Prerequisite(s): (CHM 551 or CHM 552) or permission of instructor.

CHM 554. Directed Readings. 1-3 Hours
Readings in Chemistry.
CHM 555. Modern Trends in Chemistry. 3 Hours
An advanced topics course that offers an up-to-date treatment of new areas of research. Possible subjects to be offered in this course include, but are not limited to, synthetic chemistry of natural and medicinal products, nano-materials/polymer chemistry, and advanced biochemical topics. Prerequisite(s): Graduate standing.

CHM 557. Biophysical Chemistry. 3 Hours
No description available.

CHM 560. Research I. 0-9 Hours
Research.

CHM 561. Research II. 0-9 Hours
Research.