AEROSPACE ENGINEERING

Courses

AEE 500. Introduction to Numerical Methods. 3 Hours
Numerical analysis topics include the solution of systems of linear and nonlinear algebraic equations; matrix eigenvalue problems; ordinary differential equations; optimization techniques; numerical integration and interpolation. Engineering applications presented. Computer programming required.

AEE 501. Fundamental Aerodynamics. 3 Hours
Fundamentals of aerodynamics including compressibility phenomena for subsonic, transonic, and supersonic flow. Emphasis on steady and inviscid force and moment determination for airfoils and finite wings. Prerequisite(s): Fluid mechanics or an equivalent course.

AEE 502. Advanced Aerodynamics. 3 Hours
Advanced analytical development of viscous and compressible aerodynamics as applied to lifting surfaces and slender bodies. Approximations to lifting surface theory and numerical solutions. Introduction to unsteady aerodynamics. Prerequisite(s): AEE 501.

AEE 503. Introduction to Continuum Mechanics. 3 Hours
Tensors, calculus of variations, Lagrangian and Eulerian descriptions of motion. General equations of continuum mechanics, constitutive equations of mechanics, thermodynamics of continua. Specialization to cases of solid and fluid mechanics. Prerequisite(s): AEE 503.

AEE 504. Fundamentals of Fluid Mechanics. 3 Hours
An advanced course in fluid mechanics with emphasis on the derivation of conservation equations and the application of constitutive theory. Navier-Stokes equations. Ideal fluid approximation. Exact and approximate solutions to classical viscous and inviscid problems. Compressible and incompressible flows. Corequisite(s): MEE 503 or AEE 503.

AEE 505. Advanced Aerospace Systems Design & Integration. 3 Hours
Considers iterative aircraft design process through to preliminary design. A project based course, specific topics will vary but will apply to cutting edge aerospace systems integration and design problems. Students will take a set of requirements from conceptual design through to preliminary design, analysis, component testing, and integration on a systems level. Prerequisite(s): MEE 425 or equivalent or permission of instructor.

AEE 506. Mechanical Behavior of Materials. 3 Hours
Fundamental relationships between the structure and mechanical behavior of materials. Includes fundamentals of stress and strain, the physical basis for elastic deformation, elementary dislocation theory and plastic deformation, strengthening mechanisms, yield criteria and their application to biaxial and multi-axial behavior and failure, fracture and toughening mechanisms, creep and creep rupture, behavior and failure of celluar solids, and fatigue. Prerequisite(s): MAT 501, MAT 502 or consent of instructor.

AEE 507. Orbital Dynamics. 3 Hours
Solution of the two-body problem; coordinate systems; time measurement; orbital elements. Basic orbital maneuvers; transfers; rendezvous; ground-tracks. Methods of orbit determination. Restricted three-body problem and introduction to artificial satellite theory. Prerequisite(s): MTH 219, EGM 202, or equivalent.

AEE 508. Aircraft Performance & Control. 3 Hours
Elementary development of aircraft equations of motion; performance in level flight; climbing and descending performance; turning performance; takeoff and landing performance; static stability and control in all three axes. Prerequisite(s): AEE 501.

AEE 510. Introduction to the Finite Element Method. 3 Hours
Introductory development of the Finite Element Method (FEM), and solution of one- and two-dimensional field problems from fluid, solid, and thermal mechanics. Principles of virtual work and Hamilton; approximate methods; description of stiffness, nodal force, and mass matrices; matrix assembly procedures. Course emphasis on a broad understanding of FEM theory and applications. Not open to Aircraft Structures majors. Prerequisite(s): EGM 303.

AEE 511. Principles of Corrosion. 3 Hours
Theoretical and practical application of electrochemical principles to the field of corrosion covering thermodynamics, kinetics, forms of corrosion and methods for characterizing and controlling corrosion in areas of biomedical engineering, aerospace, automotive, and marine environments. Prerequisite(s): MAT 501.

AEE 513. Propulsion. 3 Hours
Principles of propulsive devices, aerothermodynamics diffuser and nozzle flow, energy transfer in turbo-machinery, turbojet, turbo-fan, prop-fan engines, turbo-prop and turboshift engines. RAM and SCRAM jet analysis and a brief introduction to related materials and air frame-propulsion interaction.

AEE 514. Physical Gas Dynamics with Aerospace Applications. 3 Hours
Physical Gas Dynamics: The basic elements of kinetic theory, chemical thermodynamics, and statistical mechanics. Emphasis is placed on the application of these molecular theories for analyzing thermodynamic transport phenomena, as they pertain to the modeling of 'real gas effects' in high temperature flows. The course assumes material media in local equilibrium in the gaseous state but some non-equilibrium behavior will also be considered. The equilibrium topics include kinetic theory and concepts related to microscopic, molecular collisions, macroscopic chemical thermodynamics, the law of mass action, internal molecular structure and quantum energy states, general statistical mechanics applied to the prediction of thermodynamic properties of monatomic and diatomic gases, chemically reacting mixtures, and the dissociation and ionization of gases. Prerequisite(s): Backround in fluid mechanics, thermodynamics, and compressible flow or permission of instructor.

AEE 515. Conduction Heat Transfer. 3 Hours

AEE 516. Convection Heat & Mass Transfer. 3 Hours

AEE 517. Radiation Heat Transfer. 3 Hours
AEE 519. Analytical Dynamics. 3 Hours
Dynamical analysis of a system of particles and rigid bodies. Lagrangian and Hamiltonian formulation of equations of motion; classical integrals of motion. Stability analysis of linear and nonlinear systems. Prerequisite(s): EGM 202, MTH 219, or equivalent.

AEE 520. Theoretical Kinematics. 3 Hours
Introduction to the mathematical theory underlying the analysis of general spatial motion. Analysis of mechanical systems including robots, mechanisms, walking machines and mechanical hands using linear algebra, quaternion and screw formulations. Fundamental concepts include forward and inverse kinematics, workspace, Jacobians, and singularities.

AEE 521. Flight Vehicle Dynamics. 3 Hours
Dynamics of flight vehicles that emphasize the fundamental theory of flight and its application to aerospace systems. Static and dynamic stability including the characteristic longitudinal and lateral perturbation motions about the equilibrium state. Prerequisite(s): AEE 501.

AEE 522. Geometric Methods in Kinematics. 3 Hours
Trajectories and velocities of moving bodies are designed and analyzed via the principles of classical differential and algebraic geometry. Fundamentals include centroids, instantaneous invariants, resultants and center point design curves. Curves, surfaces, metrics, manifolds and geodesics in spaces of more than three dimensions are analyzed to study multi-parameter systems.

AEE 523. Engineering Design Optimization. 3 Hours
An introduction to the theory and algorithms of nonlinear optimization with an emphasis on applied engineering problems. Fundamentals include Newton's method, line searches, trust regions, convergence rates, and linear programming. Advanced topics include penalty, barrier and interior-point methods.

AEE 524. Electrochemical Power. 3 Hours
The course will cover fundamental as well as engineering aspects of fuel cell technology. Specifically, the course will cover basic principles of electrochemistry, electrical conductivity (electronic and ionic) of solids, and development/design of major fuel cells (alkaline, polymer electrolyte, phosphoric acid, molten carbonate, and solid oxide). A major part of the course will focus on solid oxide fuel cells (SOFC), as it is emerging to be dominant among various fuel cell technologies. The SOFC can readily and safely use many common hydrocarbon fuels such as natural gas, diesel, gasoline, alcohol, and coal gas. Prerequisite(s): MEE 301, MEE 312 or permission of instructor.

AEE 526. Aerospace Fuels Science. 3 Hours
Basic elements of hydrocarbon fuel production including petroleum based fuels and alternative fuels. Fuel properties, specifications, handling, and logistics. Introduction to chemical kinetics and the chemistry associated with liquid phase thermal-oxidative degradation of fuels. Introduction to the computational modeling of fuel thermal stability and fuel systems. Prerequisite(s): Permission of instructor.

AEE 527. Automatic Control Theory. 3 Hours
Stability and performance of automatic control systems. Classical methods of analysis including transfer functions, time-domain solutions, root locus and frequency response methods. Modern control theory techniques including state variable analysis, transformation to companion forms, controllability, pole placement, observability and observer systems. Prerequisite(s): ELE 432, MEE 435, or equivalent.

AEE 535. Mechanical Vibrations. 3 Hours
Review of undamped, damped, natural and forced vibrations of one and two degrees of freedom systems. Lagrange's equation, eigenvalue/eigenvector problems, modal analysis for discrete and continuous systems. Computer application for multi-degree of freedom, nonlinear problems. Prerequisite(s): MEE 319; computer programming.

AEE 538. Introduction to Aeroelasticity. 3 Hours
The study of the effect of aerodynamic forces on a flexible aircraft. Flexibility coefficients and natural modes of vibration. Quasi-steady aerodynamics. Static aeroelastic problems; wing divergence and dynamic aeroelasticity; wing flutter. An introduction to structural stability augmentation with controls. Prerequisite(s): AEE 501.

AEE 540. Flight Dynamics. 3 Hours
Laplace Transforms are used to investigate one DOF harmonic oscillations. One to six DOF differential equations of motion, including inertia, geometric, thrust, and aerodynamic terms are developed in the time domain. Euler angle rotations determine the orientation of the body. Small Disturbance Theory is used to linearize the equations, and the complex eigenproblem is solved to determine stability and mode shapes of aircraft motion. Pitch plane and lateral dynamics are analysed in both the time and frequency domains. Prerequisite(s): MTH 219, EGM 202.

AEE 541. Experimental Mechanics of Composite Materials. 3 Hours
Introduction to the mechanical response of fiber-reinforced composite materials with emphasis on the development of experimental methodology. Analytical topics include stress-strain behavior of an isotropic materials, laminate mechanics, and strength analysis. Theoretical models are applied to the analysis of experimental techniques used to characterize composite materials. Lectures are supplemented by laboratory sessions in which characterization tests are performed on contemporary composites. Prerequisite(s): EGM 303 or EGM 330.

AEE 543. Analytical Mechanics of Composite Materials. 3 Hours
Analytical models are developed to predict the mechanical and thermal behavior of fiber-reinforced composite materials as a function of constituent material properties. Both continuous and discontinuous fiber-reinforced systems are considered. Specific topics include basic mechanics of an isotropic materials, micromechanics, laminate theory, free-edge effects, and failure criteria. Prerequisite(s): EGM 303 or EGM 330.

AEE 544. Mechanics of Composite Structures. 3 Hours
Comprehensive treatment of laminated beams, plates, and sandwich structures. Effect of heterogeneity and anisotropy on bending under lateral loads, buckling, and free vibration are emphasized. Shear deformation and other higher order theories and their range of parametric application are also considered. Prerequisite(s): MAT 543 or permission of instructor.

AEE 545. Computational Methods for Design. 3 Hours
Modeling of mechanical systems and structures, analysis by analytical and numerical methods, development of mechanical design criteria and principles of optimum design. Selected topics in mechanical design and analysis, use of the digital computer as an aid in the design of mechanical elements. Prerequisite(s): Computer programming.
AEE 546. Finite Element Analysis I. 3 Hours
Fundamental development of the Finite Element Methods (FEM) and solution to field and comprehensive structural problems. Variational principles and weak-forms; finite element discretization; shape functions; finite elements for field problems; bar, beam, plate, and shell elements; isoparametric finite elements, stiffness, nodal force, and mass matrices; matrix assembly procedures; computer coding techniques; modeling decisions; program output interpretation. Course emphasis on a thorough understanding of FEM theory and modeling techniques. Prerequisite(s): AEE 503 or MEE 533.

AEE 547. Finite Element Analysis II. 3 Hours
Advanced topics: heat transfer; transient dynamics; nonlinear analysis; substructuring and static condensation; effects of inexact numerical integration and element incompatibility; patch test; frontal solution techniques; selected topics from the recent literature. Prerequisite(s): AEE 546.

AEE 551. Noise & Vibration Control. 3 Hours
Concepts of noise and vibration control applied to mechanical systems. Methodologies covered will include passive treatments using resistive elements (sound absorbers, vibration damping) and reactive elements (tailoring of material stiffness and mass); active control of sound and vibration; and numerical analysis. Prerequisite(s): MEE 319 or MEE 439.

AEE 552. Boundary Layers Theory. 3 Hours
Development of the Prandtl boundary layer approximation in two and three dimensions for both compressible and incompressible flows. Exact and approximate solutions for laminar flows. Unsteady boundary layers. Linear stability theory and transition to turbulence. Empirical and semi-empirical methods for turbulent boundary layers. Higher order boundary layer theory. Prerequisite(s): AEE 504 or equivalent.

AEE 553. Compressible Flow. 3 Hours
Fundamental equations of compressible flow. Introduction to flow in two and three dimensions. Two-dimensional supersonic flow, small perturbation theory, method of characteristics, oblique shock theory. Introduction to unsteady one-dimensional motion and shock tube theory. Method of surface singularities. Prerequisite(s): AEE 504 or equivalent.

AEE 555. Turbulence. 3 Hours
Origin, evolution, and dynamics of fully turbulent flows. Description of statistical theory, spectral dynamics, and the energy cascade. Characteristics of wall-bounded and free turbulent shear flows. Reynolds stress models. Prerequisite(s): AEE 504 or equivalent.

AEE 556. Hypersonic Aerodynamics. 3 Hours
Hypersonic prediction techniques, similarity rules, Newtonian impact theory, high-temperature equilibrium properties of gases; wake characteristics; heat transfer, chemical kinetics and reacting gas flows, simulation and testing techniques. Prerequisite(s): AEE 504 or permission of instructor.

AEE 558. Computational Fluid Dynamics. 3 Hours
Numerical solution to Navier-Stokes equations and approximations such as the boundary layer equations for air-flow about a slender body. Numerical techniques for the solution of the transonic small disturbance equations. Numerical determination of fluid instabilities. Prerequisite(s): AEE 504 or permission of instructor.

AEE 560. Propulsion Systems. 3 Hours
Introduction and history, types of propulsion systems, thermodynamics review and simple cycle analysis, thermodynamics of high speed gas flow, aircraft gas turbine engine, parametric cycle analysis of various types of gas turbine engines, component and engine performance analysis (inter-turbine burners), advanced cycles with regeneration, reheating, and inter-cooling, variable and inverse cycle engines, hybrid propulsion systems (turbo-ramjets, rocket-ram-scramjets, etc.), advanced propulsion systems, pulse detonation engine theory and concepts, thermal management of high-speed flight, energy management and vehicle synthesis. Prerequisite(s): (MEE 413 or MEE 513) or permission of instructor.

AEE 565. Fundamentals of Fuels & Combustion. 3 Hours
Heat of combustion and flame temperature calculations; rate of chemical reaction and Arhenius relationship; theory of thermal explosions and concept of ignition delay and critical mass; phenomena associated with hydrocarbon-air combustion; specific applications of combustion.

AEE 570. Fracture Mechanics. 3 Hours
Application of the principles of fracture mechanics to problems associated with fatigue and fracture in engineering structures. The course will cover the development of models that apply to a range of materials, geometries and loading conditions. Prerequisite(s): AEE 506 or permission of instructor.

AEE 590. Problems in Aerospace Engineering. 1-3 Hours
Special topics in Aerospace.

AEE 595. Aerospace Engineering Project. 0-3 Hours
Student participation in an aerospace research, design, or development project under the direction of a project advisor. The student must show satisfactory progress as determined by the project advisor and must present a written report at the conclusion of the project.

AEE 598. DE Dissertation. 1-15 Hours
Directed readings in aerospace engineering to be arranged and approved by the student’s advisory committee and the program director. May be repeated.

AEE 698. PhD Dissertation. 1-15 Hours
Research in aerospace engineering. Results must be of sufficient importance to merit publication.

AEE 699. PHD Dissertation. 1-15 Hours
Research in aerospace engineering. Results must be of sufficient importance to merit publication.